Architect Rey Galua An assessment of sustainability of a green residential building in an urban setting: focus in Pueblo de Oro, Cagayan de Oro City
1 Architect Rey Galua, 2Ermelinda G. Tobias
1 College of Engineering and Architecture, Mindanao University of Science and Technology, Cagayan de Oro City, Philippines; 2 Department of Biological Sciences, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City,
Philippines. Corresponding author: Architect Rey Galua, rgaluasds@gmail.com
Abstract. A study of the technical, economic, environmental and architectural aspects of green residential building situated in an urban location has been performed. The results of the study revealed the following: the building has been observed to be properly oriented with minimum levels of lighting consumption and sufficient lighting designs, and that with the implementation of the green rooftop, restoration and plantation of different species of plants a considerable amount of carbon has been offset for the growing of the plant at approximately 470 tons of carbon for the 20-year time horizon. As to the elements of sustainable energy use, the energy usage of the green building has been compared with that of the traditional building. Architect Rey Galua the results have indicated that green building has reduced its energy consumption of approximately 40% per unit of floor area when compared with that of the traditional building design. In terms of energy savings, it has been projected that due to the use of the foregoing strategies, the green building can save up to 1,800 kilowatt-hours of energy annually, and the increased construction cost due to the application of these strategies may be recovered at approximately eleven years of operation of the building. In the selection and conservation of resources associated to the construction of the green building, the study revealed that when compared to the traditional building, it has the potential to reduce approximately 40% associated carbon dioxide emissions and 40% primary energy for the construction of the green building. The calculated estimates reveal that with this strategy, it can mitigate approximately 21,000 kg of carbon dioxide emitted to the environment and approximately 2,100 gigajoule of primary energy is avoided; as to building’s indoor environmental quality, the results of the study indicates that the resulting design have achieved the maximum natural ventilation possible. As to acceptability of the green building, the survey results as per statistical analyses revealed high level of acceptance of respondents in terms of the overall satisfaction features, the general and the specific features and the given psychological indicators of the design.
Introduction. There is a global consensus that anthropogenic emission of greenhouse gases in the atmosphere causes the increase of temperatures on the surface of the earth and that this has facilitated climate changes faster than normal (Stern 2007). These emissions caused by anthropogenic enormous growth and development heavily rely on carbon-based fossil fuels to supply these developments. At present, the effects of climate change due to global warming has been recognized and that there have been actions at all levels, i.e. government, private enterprises and professional to mitigate the impacts of these man-made climatic changes or even to adapt with the current climactic changes.
Emissions of carbon dioxide from fuel combustion, in conjunction with that emitted from cement factory are responsible for more than 75% of the increase in atmospheric carbon dioxide since the pre-industrial 18th century (Solomon et al 2007). The construction and occupation of buildings is a substantial contributor of carbon dioxide emissions, with almost a quarter or 25% of the total carbon dioxide emissions attributable to energy use in buildings (Metz et al 2007). A further 5% can be attributed to the manufacture of cement which is a principal component of building construction material. Thus, there is really a great interest in this area to reduce the energy demand and the consequential carbon emissions attributed to buildings construction and operation.
The aim of this study is to compare the standard or traditionally-designed residential building with that of a proposed set-up which is designed as a modern green residential building situated in the local setting. This study focused on the present research gap, which is to answer whether indeed there is an environmental benefit in the design and construction of green buildings. Problems associated with each key element of sustainable developments shall be addressed in details, such as site selection and development, energy use, water conservation, environmental quality and social or community acceptability. In site development and selection it is expected that issues related to proper building orientation and indoor air quality shall be addressed; in energy use, key problems related to increase in energy demand as the building size increased shall be discussed, and key issues related to improved indoor air quality shall be investigated and ecological parameters were measured and monitored for three months. Foremost to the study is to determine whether the expected green building shall pass social and community acceptability. Read More
Source: AES BIOFLUX